Exit

Author Archives: Compressed Air Systems, Inc.

  1. How to Reduce Pressure Drop in Your Industrial Compressed Air System

    Comments Off on How to Reduce Pressure Drop in Your Industrial Compressed Air System

    Compressed air systems can develop instances of pressure drop throughout their lifespans, disrupting productivity and leading to inconsistent performance. However, with the right maintenance schedule, parts, and monitoring processes, businesses can minimize the risk of system pressure drop and reduce unscheduled downtime and performance inconsistencies. Learn more about the common causes of pressure drop, how your team or repair technicians can reduce pressure drop, and the benefits of a proactive approach.

    What Causes Pressure Drop?

    Maintaining a stable pressure level in a compressed air system requires an unobstructed closed loop or connective hose through which pressurized air can travel at a steady rate. Any changes to this environment, such as loose parts, obstructions within the system, and rough internal surfaces, can disrupt the flow of air. Disruptions to steady air compressor pressure come from two major categories:

    • Problems with air quality components which include air/lubricant separators, moisture separators, aftercooler components, filters, and dryers.
    • Problems with the distribution components, such as the tubing, couplings, hoses, pipes, or regulators.

    A pressure drop may register when the compressor delivers insufficient air because of blockage, leaks, or other interruptions. This lowers the pressure within the system, and the compressed air regulation systems respond accordingly. The pressure changes can also result in a lot of wasted energy; in fact, this energy waste increases exponentially as the pressure conditions exceed the recommended pressure levels. If technicians notice restricted air flow within the system or changes in pressure levels that the system must accommodate, it’s time for an inspection or maintenance.

    How to Reduce Pressure Drop

    While it’s impossible to eliminate pressure drop within an industrial compressed air system entirely, it is possible to significantly reduce the risk and severity of any pressure drops. Frequent inspections, ongoing monitoring, and preventative maintenance can help your facility catch problems early on and prevent them from growing too large. Follow these steps to reduce pressure drop:

    1. Inline Filtration

    An inline air compressor filter is a device that is installed in the air line between the compressor and the point of use. It is designed to remove contaminants, such as dirt, rust, and moisture, from the compressed air before it is used. This helps to protect the equipment and tools that use the compressed air, and can also help to improve the quality of the finished product. Inline air compressor filters typically use a filter element made of paper, metal mesh, or synthetic media to remove the contaminants. They are also made in different size and flow rate, depending on the compressor and the application.

    An inline air compressor filter can reduce pressure drop by using a filter element with a high dirt-holding capacity, a large filter surface area, and a low resistance to airflow. A high dirt-holding capacity means that the filter element can trap a large amount of contaminants before it becomes clogged, reducing the need for frequent filter replacement. A large filter surface area allows for more contaminants to be trapped, while also allowing for a higher airflow rate. A low resistance to airflow means that the filter element does not impede the flow of air too much, reducing the pressure drop across the filter. Changing the filter elements on a frequent basis will help keep the pressure drop low.

    2. Inspect the Tubing

    Tubing is a common source of problems that cause pressure drop. Loose fittings at the ends of the hoses, harsh bends in the hose, and even developing wear or holes can lead to pressure drop. The internal surface of the hose, especially if it’s rough or abraded, can interfere with pressure. Regularly check the tubing to ensure it’s airtight throughout its length and at any fittings. Look for cracks, detectable airflow, and rust formation (which can indicate developing damage and vulnerability).

    3. Check for Any Worn Hoses

    Examine hoses for leaks, especially developing leaks that may escape casual notice. Also, ensure hoses are arranged with as little external stress as possible.

    4. Consider the System Connections

    Connectors, valves, and other components should be tightly fit into place and in good condition without rust or cracks. Also, facilities with overly complex systems that have multiple connectors will benefit from a simplified system with fewer failure points.

    5. Check the Regulators

    The pressure regulators may be faulty and cause pressure drops without any damage to the actual system. Prevent air compressor regulator pressure drop by resetting the regulators and ensuring they’re taking accurate readings.

    6. Check the Lubricators

    It may be time to replace lubricators within the compressed air system to maintain the right flow rate.

    The Benefits of Reducing Pressure Drop

    Pressure drop poses a real risk of inhibiting high-quality performance and wasting a lot of energy. Consider these benefits of addressing and reducing pressure drop:

    Improve System Performance

    Boost your pneumatic system’s performance by stopping leaks and pressure drop. Your employees can use the compressed air system more efficiently, with fewer delays and errors. Completely addressing pressure drop issues can also reduce unscheduled downtime and costly parts replacement.

    Reduce Maintenance and Unscheduled Downtime

    Unplanned maintenance and repairs are expensive. Not only does your facility have to pay emergency rates, but you lose production hours. This can put you behind schedule or force you to pay SLA fees. But proactive monitoring and maintenance ensure you catch problems in a timely manner. The problems are smaller, less expensive to repair, and faster to resolve. Investing in newer or more resilient equipment can reduce downtime even more.

    Lower the Operating Costs

    Pressure drops, as well as the potential gaps and leaks causing the pressure drop, leads to higher operating costs and wasted energy. Addressing the problem reduces operating costs on a day-to-day basis. For every 2 PSIG pressure drop equals one percent less energy. Lowering your plant pressure 10 PSIG gives you a five percent energy savings.

    Reduce Facility Emissions

    Decreasing energy usage also has the broader effects of reducing your facility’s carbon footprint and energy waste. You will reduce your facility’s overall generation of greenhouse gases.

    Start Reducing Pressure Drop With Support From Compressed Air Systems

    Pressure drop is expensive, wasteful, and potentially damaging to your production levels. But resolving pressure drop with maintenance and monitoring is simple, cost-effective, and better for your company’s ESG goals. Turn to Compressed Air Systems for support in repairing, maintaining, and improving your compressed air systems. Contact us today for more information.

  2. 5 Ways a Blower and Vacuum Pump Can Help With Your Production

    Comments Off on 5 Ways a Blower and Vacuum Pump Can Help With Your Production

    Industrial blowers and vacuums help regulate airflow in warehouses, factories, and other production facilities. One common application of blowers and vacuums is cleaning—using air to remove debris, dirt, water, and other contaminants. They also remove stale and contaminated air from industrial settings. But compressed air blowers and vacuums can serve other purposes, too.

    Here are five ways a blower and vacuum can help with your production.

    Applications of Blowers and Vacuums

    Nitrogen Blanketing/Modified Atmosphere Packaging (MAP)

    Modified atmosphere packaging (MAP) technology helps extend the shelf life of fresh food. It involves removing the atmospheric air inside a package and replacing it with a protective gas mix. This gas—usually consisting of nitrogen—maximizes the freshness of the product.

    Though both MAP and vacuum packaging require compressed air and vacuum pumps, MAP differs because it doesn’t always have to remove oxygen from the packaging. Instead, MAP involves adjusting oxygen and carbon dioxide levels within the package to the required values. The vacuum pump makes the final seal to ensure the gases remain intact in the container.

    Filling and Closing Machines

    Vacuum systems have a pivotal role in the beverage industry. They help evacuate air and other contaminants to ensure consumers receive quality goods. Vacuuming also prolongs the shelf life of various products. Filling and closing machines use vacuum systems to seal:

    • Alcoholic drinks
    • Bottled water
    • Juices
    • Sports drinks
    • Nutritional supplements

    Bottle Filling

    The oxygen content in bottled beer must be kept low. That is why breweries employ different bottle-filling methods. They may flush the bottles with CO2 and fill them with beer using a long tube filler. However, this method uses a significant amount of CO2. Another method involves evacuating the bottles and flushing them with CO2, which minimizes CO2 consumption.

    Packaging

    Vacuum systems have a critical role in packaging. Generally, the pressure around a product has a mechanical impact on the product’s external shape. Therefore, the modified atmosphere packaging process is an ideal method across many applications, including food and beverage, pharmaceutical, and cosmetics processing. By packaging products in a modified atmosphere and removing oxygen, MAP encloses the product in a blister package, places it in a vacuum chamber, and evacuates it. After injecting it with the modified atmosphere, the package is sealed with a protective film.

    Dairy Processing and Milking

    Yogurt-filling machines require a vacuum pump to position the lids on multiple pre-filled yogurt containers at once. The machines have suction cups that pick up the lids, separate them, and place them in the right positions.

    Milking systems have vacuums that attach to the cow udder and transport the milk. Compared to conventional oil-lubricated pumps, side channel blowers and liquid ring pumps do not use oil and thus have fewer maintenance needs. Side channel blowers in particular do not need water connections and are available with frequency converters.

    Get the Right Blower and Vacuum for Your Application

    Compressed air blowers and vacuum pumps are valuable devices that enhance or, in many cases, enable production. High-volume blowers and vacuum pumps are available in different varieties, so Compressed Air Systems is here to help you choose the right system(s) for your commercial or industrial application. Contact us today to learn more about our products and services.

  3. Air Compressor Oil Water Separators: A Guide

    Comments Off on Air Compressor Oil Water Separators: A Guide

    Since 1963, Compressed Air Systems, Inc. has specialized in providing comprehensive, customized air compressor solutions for industries ranging from medical and pharmaceutical to electronics and aerospace. For your convenience, we have capabilities for in-house design consulting, equipment rentals, installations, and 24/7 maintenance services, with the goal of providing everything you need, be it a new turnkey system or repairs.

    Additionally, our extensive equipment offerings include blowers, vacuum systems, nitrogen and process chillers, air compressors, and air compressor oil-water separators. In this case study, learn more about oil-water separators, how they work, and why they’re a vital part of an air compressor system.

    What Is an Oil-Water Separator?

    An oil-water separator assists in pulling water out of compressed air. As compressed air releases from the compressor’s storage tank, it often contains moisture that then condenses to create droplets of water. The oil-water separator will effectively eliminate the water droplets, which prevents them from building up. This reduces the risk of compressor damage, equipment contamination, and corrosion when utilizing the compressed air. Essentially, oil-water separators effectively extend the life span of your equipment.

    Why Is There Water in the Compressor System?

    An air compressor inherently captures water when it draws in air saturated with environmental moisture. When the air compresses, that moisture condenses, producing water droplets. Using compressed air that still contains water can degrade your tools and cause operational issues, like diluting paint in paint-spraying projects, for example.

    What Is the Best Oil-Water Separator for Air Compressors?

    Our air compressor oil-water separators are capable of maintaining as much as 98% efficiency down to half of the rated flow capacity. With varying weights, sizes, and capacities to best fit your individual application, we offer an extensive line of moisture separators and oil-water separators.

    How Does an Oil-Water Separator for Air Compressors Work?

    Oil-water separators utilize a coalescing principle or centrifugal design to remove condensate from an air compressor. The airflow in coalescing separators moves from inside the filter element to the outside, removing water droplets through the filter cartridge. Centrifugal oil-water separators rely on rotary motion, pushing the air, water, and other particles like dust to accelerate radially outward and through a filter element like polyethylene. This allows the water and other particulates to externally drain and collect in a bowl.

    Where Do You Put the Oil-Water Separator on an Air Compressor?

    The proper installation location for the oil-water separator is downstream from the compressor on its discharge line, as near as possible to the compressor itself. The separator relies on gravity to drain the water into the compressor tank, so installing it high on the discharge line is ideal and will help prevent condensate from entering the airstream.

    How Does a Desiccant Air Dryer Work?”

    In addition to moisture separators, desiccant air dryers remove moisture from incoming air to improve compressor air quality. Desiccant air dryers, which are similar in design to water trap filters, rely on dual pressurized tanks and small desiccant beads to absorb water droplets from the air. They switch back and forth between drying and regeneration cycles. Pressurized air moves through the desiccant bead vessel to remove droplets until the air reaches the optimal dew point, at which time it releases. A heating process after that depressurization then eliminates moisture from the beads, and vessel repressurization occurs to prepare for the next drying cycle.

    How Do You Dispose of the Condensate/Water From an Air Compressor?

    Oil is a lubricant for a compressor’s internal components. Since 1972, the EPA has enforced regulations on air compressor condensate to reduce drinking water pollution. According to the EPA, wastewater from an air compressor should not exceed 40 parts per million of oil. Typical air compressor condensate contains oil at roughly 300 parts per million, so an oil-water separator is necessary to:

    • Meet EPA regulations for your facility
    • Avoid penalties
    • Prevent end-product contamination
    • Decrease environmental impact

    Air Compressor Oil-Water Separators From Compressed Air Systems

    Oil-water separators are important components for air compressors to not only safeguard your system but also to avoid contamination and EPA violations. Compressed Air Systems of Tampa, Florida, is backed by nearly 60 years of experience in delivering high-performance air compressor solutions, and our team is ready to help. For more information, you can contact us directly or read our guide on moisture content in compressed air.

Click Here to Shop Our Products